Mach 1433

6 November 2023

Calculate the dot products

$$
[3,6] \cdot\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \text { and }[8,0] \cdot\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \text { and }[8,0] \cdot\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

Dimensions

The dimension of a vector (list) is how many numbers are in the list.

- The dimension of the vector $\left[\begin{array}{c}-4 \\ 9\end{array}\right]$ is 2 .
- The dimension of the vector $\left[\begin{array}{c}57 \\ 0 \\ 1 / 2\end{array}\right]$ is 3 .
* In order to add, subtract, or take dot products of vectors, they must have the same dimension.
$[2,2] \cdot[1,-2,4,9]$ is nonsense.
$\vec{u}+\vec{w}$ is a vector.
Assume $\vec{u}, \vec{v}, \vec{w}$ all have dimension 3 .
$5+\vec{v}$ is nonsense.
$5 \vec{w}$ is a vector.
$\vec{u} \cdot \vec{w}$ is a scalar (a number).
$\vec{u} \times \vec{w}$ is a vector. If we think of $\frac{a}{b}$ as the answer to $b \times(?)=a$, we
have a problem using vectors:
$\frac{\vec{u}}{\vec{w}}$ is nonsense.
$[2,1,-2] \times[-2,4,3]=[11,-2,10]$
$[2,1,-2] \times[0,5,1]=[11,-2,10]$
$\frac{\vec{u}}{12}$ is a vector.
$[2,1,-2] \times[2,6,-1]=[11,-2,10]$
There is no such thing as division for cross product.

Transformations of vectors

The functions you study in school and in Analysis 1 are usually from \mathbb{R} to \mathbb{R}, meaning the input and output are numbers.

An example of a function from \mathbb{R}^{2} to \mathbb{R}^{2} could be $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ e^{x}\end{array}\right]$.
We can also write that as

$$
f(x \hat{\imath}+y \hat{\jmath})=(x-y) \hat{\imath}+e^{x} \hat{\jmath} \quad \text { or } \quad f(x, y)=\left(x-y, e^{x}\right) .
$$

Often, the word transformation is used instead of function when talking about vectors.

Learning the formula $\frac{a}{b}+\frac{c}{d}=\frac{b c+a d}{b d}$ without ever seeing pictures like

seems ridiculous. But that is what we will do for matrices today.

- The reason that matrix multiplication is calculated the way it is involves linear transformations.
- To actually do matrix calculations, it's easier to memorize a formula / rule.

QUIZZES

Quiz 3 next week:

- Lines
- Planes
- any previous material.

See Lists 1-2. I will provide $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \times\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\left[\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right]$ for you on the quiz.
Quiz 4 the week after (20.10, a single-meeting day):

- Matrix multiplication calculations
- When is it possible to do $\vec{a}+\vec{b}, \vec{a} \times \vec{b}, A+B, A B$, etc. See List 3.

A vector is...

- ...a list of numbers.
- ...an arrow.
[1,2]
- ...a point. $\hat{\imath}+2 \hat{\jmath}$

Matrix

A matrix is...

- ...a rectangle of numbers.
- ...a list of vectors, where each vector is a row.
- ...a list of vectors, where each vector is a column.
- ...(other ways to think about matrices will come later).

$$
\left[\begin{array}{cc}
5 & 8 \\
-2 & 3
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 0 \\
4 & -4 \\
2 & 12
\end{array}\right] \quad\left[\begin{array}{cccc}
-8 & 19 & 4 & 4 \\
19 & -4 & 2 & 6 \\
15 & 8 & 2 & 16 \\
3 & 14 & 0 & 12
\end{array}\right]
$$

Malrix

One matrix ("may-tricks" [mertriks]), two matrices ("may-trih-sees" [mertrisiz]).

We usually use a capital letter (no $\overrightarrow{ }$ or other mark) for a matrix variable.

$$
A=\left[\begin{array}{ccc}
2 & 2 & 1 \\
3 & -5 & -10
\end{array}\right], \quad M=\left[\begin{array}{cc}
5 & 0 \\
0 & \frac{1}{5}
\end{array}\right]
$$

The entries in a matrix are sometimes given two subscripts:

$$
A=\left[\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right] \text { or } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \text {. }
$$

Row, column, dimensions

In the matrix $\left[\begin{array}{ccc}-1 & 2 & 21 \\ 13 & -1 & -7 \\ 10 & -9 & 13\end{array}\right]$,

- the rows are $\left[\begin{array}{lll}-1 & 2 & 21\end{array}\right]$ and $\left[\begin{array}{lll}13 & -1 & -7\end{array}\right]$ and $\left[\begin{array}{lll}10 & -9 & 13\end{array}\right]$.
- the columns are $\left[\begin{array}{c}-1 \\ 13 \\ 10\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ -9\end{array}\right]$ and $\left[\begin{array}{c}21 \\ -7 \\ 13\end{array}\right]$.
-1
- the main diagonal is

$$
-1
$$

Row, column, dimensions
In the matrix $\left[\begin{array}{ccc}-1 & 2 & 21 \\ 13 & -1 & -7 \\ 10 & -9 & 13\end{array}\right]$,

- the rows are $\left[\begin{array}{lll}-1 & 2 & 21\end{array}\right]$ and $\left[\begin{array}{lll}13 & -1 & -7\end{array}\right]$ and $\left[\begin{array}{lll}10 & -9 & 13\end{array}\right]$.
- the columns are $\left[\begin{array}{c}-1 \\ 13 \\ 10\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ -9\end{array}\right]$ and $\left[\begin{array}{c}21 \\ -7 \\ 13\end{array}\right]$.
- the main diagonal is -1

Row, column, dimensions
In the matrix $\left[\begin{array}{ccc}-1 & 2 & 21 \\ 13 & -1 & -7 \\ 10 & -9 & 13\end{array}\right]$,

- the rows are $\left[\begin{array}{lll}-1 & 2 & 21\end{array}\right]$ and $\left[\begin{array}{lll}13 & -1 & -7\end{array}\right]$ and $\left[\begin{array}{lll}10 & -9 & 13\end{array}\right]$.
- the columns are $\left[\begin{array}{c}-1 \\ 13 \\ 10\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ -9\end{array}\right]$ and $\left[\begin{array}{c}21 \\ -7 \\ 13\end{array}\right]$.
- the main diagonal is

Dimensions

The dimension of the vector $\left[\begin{array}{c}-4 \\ 9\end{array}\right]$ is 2 . (or 2×1 if we think of $\begin{array}{r}\text { this as a matrix) }\end{array}$
The dimension of the vector $\left[\begin{array}{c}57 \\ 0 \\ 1 / 2\end{array}\right]$ is 3 . (or 3×1 if we think of $\begin{array}{r}\text { this as a matrix) }\end{array}$
The dimensions of the matrix $\left[\begin{array}{ccc}8 & 5 & -1 \\ 0 & 4 & 4\end{array}\right]$ are 2×3 (aloud: "2 by 3 ").
We have to list both numbers! Dimensions 2×3 does not mean 6 .

Dimensions

awass rows first, then columns.

For example a 3×2 matrix looks like $\left[\begin{array}{ll}\cdot & \cdot \\ \cdot & .\end{array}\right]$, while a 2×3 matrix looks like $\left[\begin{array}{lll}. & . & \cdot \\ . & & .\end{array}\right]$ These are different dimensions.

A square matrix is one with the same number of rows as columns.

Matrix calculations

- scalar multiplication

$$
9\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=?
$$

- addition/subtraction $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$?
- matrix times a vector $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}10 \\ 11\end{array}\right]=$? (note: no \cdot or \times required)
- matrix multiplication $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$? (note: no \cdot or \times required)

Matrix calculations

- scalar multiplication

$$
\begin{aligned}
& 9\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
9 & 18 \\
27 & 36
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=\left[\begin{array}{cc}
6 & 8 \\
10 & 12
\end{array}\right]}
\end{aligned}
$$

These two are exactly what you would expect \cdot
Official formulas: If $M=s A$ then $m_{i j}=s a_{i j}$, where s is a number.

$$
\text { If } M=A \pm B \text { then } m_{i j}=a_{i j} \pm b_{i j}
$$

Two subtraction examples:

$$
\begin{gathered}
{\left[\begin{array}{ll}
5 & 1 \\
2 & 9 \\
0 & 7
\end{array}\right]-\left[\begin{array}{cc}
2 & -1 \\
-2 & 5 \\
5 & 1
\end{array}\right]=?} \\
\\
(\text { easy) }
\end{gathered}
$$

道. The sum $(A+B)$ and difference $(A-B)$ of two matrices only exists if the matrices have exactly the same dimensions.

Makrix multiplication

Example 1: How can we calculate $\left[\begin{array}{ll}3 & 6 \\ 8 & 0\end{array}\right]\left[\begin{array}{c}1 \\ -2\end{array}\right]$? There are two ways.
$\begin{aligned} & \text { Using linear } \\ & \text { combinations: }\end{aligned}\left[\begin{array}{ll}3 & 6 \\ 8 & 0\end{array}\right]\left[\begin{array}{c}1 \\ -2\end{array}\right]=1\left[\begin{array}{l}3 \\ 8\end{array}\right]+(-2)\left[\begin{array}{l}6 \\ 0\end{array}\right]=\left[\begin{array}{c}-9 \\ 8\end{array}\right]$

Using dot products:

$$
\left[\begin{array}{ll}
3 & 6 \\
8 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
(3,6) \cdot(1,-2) \\
(8,0) \cdot(1,-2)
\end{array}\right]=\left[\begin{array}{c}
-9 \\
8
\end{array}\right]
$$

$$
\begin{aligned}
& {[3,6] \cdot\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=-9} \\
& \text { and } \\
& {[8,0] \cdot\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=8}
\end{aligned}
$$

Rule: if $\vec{w}=A \vec{v}$ then $w_{i}=($ row i of $A) \cdot \vec{v}$.
Example 2: $\left[\begin{array}{cc}3 & 6 \\ 8 & 0 \\ 2 & 2 \\ 5 & -5\end{array}\right]\left[\begin{array}{c}1 \\ -2\end{array}\right]=\left[\begin{array}{c}-9 \\ 8 \\ -2 \\ 15\end{array}\right]$

Rule: if $\vec{w}=A \vec{v}$ then $w_{i}=($ row i of $A) \cdot \vec{v}$.
Example $3:\left[\begin{array}{cc}3 & 6 \\ 8 & 0 \\ 2 & 2 \\ 5 & -5\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 4 \\ 9\end{array}\right]$ DOES NOT EXIST.

* In order to add, subtract, or take dot products of vectors, they must have the same dimension.

Rule: if $\vec{w}=A \vec{v}$ then $w_{i}=($ row i of $A) \cdot \vec{v}$.
Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 4: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 16 & 16\end{array}\right]$

Rule: if $\vec{w}=A \vec{v}$ then $w_{i}=($ row i of $A) \cdot \vec{v}$.
Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 4: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 16 & 16\end{array}\right]$

$$
\begin{aligned}
& {[-2,1,5] \cdot[1,2,3]=-2+2+15=16} \\
& {[-2,1,5] \cdot[-1,9,1]=2+9+5=16}
\end{aligned}
$$

Rule: if $\vec{w}=A \vec{v}$ then $w_{i}=($ row i of $A) \cdot \vec{v}$.
Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 4: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 16 & 16\end{array}\right]$
Alternatively:

$$
\text { (1) }\left[\begin{array}{c}
4 \\
-2
\end{array}\right]+(2)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(3)\left[\begin{array}{l}
0 \\
6
\end{array}\right]=\left[\begin{array}{c}
6 \\
16
\end{array}\right]
$$

and

$$
(-1)\left[\begin{array}{c}
4 \\
-2
\end{array}\right]+(9)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(1)\left[\begin{array}{l}
0 \\
6
\end{array}\right]=\left[\begin{array}{c}
5 \\
16
\end{array}\right]
$$

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example 5: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}4 & 8 \\ 6 & -3\end{array}\right]$
$2 \times 3 \times \begin{gathered}2 \times 2\end{gathered} \begin{gathered}\text { impossible! } \\ \text { because }[4,1,0] \cdot[4,6] \\ \text { is impossible }\end{gathered}$
The "inner" numbers must agree for $A B$ to exist.
*. The matrix multiplication $A B$ is only possible if $(\#$ of columns of $A)=(\#$ of rows of $B)$.

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
$\underset{\text { again }}{\text { Example 4: }}\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 6 \\ 16 & 16\end{array}\right]$

The "inner" numbers must agree for $A B$ to exist.

The "outer" numbers give the dimensions of $A B$.

